Evidence of molecular alignment fluctuations in aqueous dilute liquid crystalline media

نویسندگان

  • Martti Louhivuori
  • Renee Otten
  • Tapio Salminen
  • Arto Annila
چکیده

Protein dynamics can be studied by NMR measurements of aqueous dilute liquid crystalline samples. However, the measured residual dipolar couplings are sensitive not only to internal fluctuations but to all changes in internuclear vectors relative to the laboratory frame. We show that side-chain fluctuations and bond librations in the ps-ns time scale perturb the molecular shape and charge distribution of a small globular protein sufficiently to cause a noticeable variation in the molecular alignment. The alignment variation disperses the bond vectors of a conformational ensemble even further from the dispersion already caused by internal fluctuations of a protein. Consequently RDC-probed order parameters are lower than those obtained by laboratory frame relaxation measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid-crystalline phases.

Alignment of macromolecules in nearly neutral aqueous lyotropic liquid-crystalline media such as bicelles, commonly used in macromolecular NMR studies, can be predicted accurately by a steric obstruction model (Zweckstetter and Bax, 2000). A simple extension of this model is described that results in improved predictions for both the alignment orientation and magnitude of protein and DNA solute...

متن کامل

Liquid Crystalline Samples: Application to Macromolecular Structure Determination

NMR spectra of small molecules dissolved in organic liquid crystalline media permit measurement of large numbers of intramolecular dipolar couplings that carry very precise information on molecular structure.1,2 However, for molecules with more than half a dozen protons, the strong degree of solute alignment obtained in such media typically results in a vast number of large, non-first-order spl...

متن کامل

31P chemical shift anisotropy as an aid in determining nucleic acid structure in liquid crystals.

The low density of protons in nucleic acids and the paucity of long-range NOE restraints make NMR structure determination a notoriously difficult problem.1 Measurement of residual dipolar couplings for nucleic acids dissolved in a dilute aqueous liquid crystalline medium can alleviate this problem,2-5 but does not provide direct information on the phosphodiester linkages connecting the nucleoti...

متن کامل

Removal of Dilute Benzene in Water through Ionic Liquid/Poly(Vinyl Chloride) Membranes by Pervaporation

This paper focuses on the effects of the addition of an ionic liquid, 1-Allyl-3-butylimidazilium bis(trifluoromethane sulfonyl)imide ([ABIM]TFSI), which has a high affinity for benzene, into the poly(vinyl chloride) (PVC) membrane on the pervaporation characteristics of the removal of benzene from aqueous solutions of dilute benzene. When aqueous solutions of 100~500 ppm benzene were permeated ...

متن کامل

Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings.

Residual dipolar couplings for pairs of proximate magnetic nuclei in macromolecules can easily be measured using high-resolution NMR methods when the molecules are dissolved in dilute liquid crystalline media. The resulting couplings can in principle be used to constrain the relative orientation of molecular fragments in macromolecular systems to build a complete structure. However, determinati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Biomolecular Nmr

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2007